
J Stat Phys (2008) 131: 631–650
DOI 10.1007/s10955-008-9516-0

Dimer Coverings on the Sierpinski Gasket

Shu-Chiuan Chang · Lung-Chi Chen

Received: 23 November 2007 / Accepted: 29 February 2008 / Published online: 15 March 2008
© Springer Science+Business Media, LLC 2008

Abstract We present the number of dimer coverings Nd(n) on the Sierpinski gasket SGd(n)

at stage n with dimension d equal to two, three, four or five. When the number of vertices,
denoted as v(n), of the Sierpinski gasket is an even number, Nd(n) is the number of close-
packed dimers. When the number of vertices is an odd number, no close-packed configu-
rations are possible and we allow one of the outmost vertices uncovered. The entropy of
absorption of diatomic molecules per site, defined as SSGd

= limn→∞ lnNd(n)/v(n), is cal-
culated to be ln(2)/3 exactly for SG2. The numbers of dimers on the generalized Sierpinski
gasket SGd,b(n) with d = 2 and b = 3,4,5 are also obtained exactly with entropies equal
to ln(6)/7, ln(28)/12, ln(200)/18, respectively. The number of dimer coverings for SG3 is
given by an exact product expression, such that its entropy is given by an exact summation
expression. The upper and lower bounds for the entropy are derived in terms of the results
at a certain stage for SGd(n) with d = 3,4,5. As the difference between these bounds con-
verges quickly to zero as the calculated stage increases, the numerical value of SSGd

with
d = 3,4,5 can be evaluated with more than a hundred significant figures accurate.
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1 Introduction

The enumeration of close-packed dimers N(G) on a graph G was first considered by Fowler
and Rushbrooke in enumerating the absorption of diatomic molecules on a surface [1]. The
dimer coverings of a graph is a classical model in statistical physics and is called perfect
matchings in mathematical literature. The dimer model on the square lattice was solved ex-
actly by Kasteleyn [2] and Temperley and Fisher [3, 4]. The model is equivalent to various
other statistical mechanical problems. For example, the zero-field partition function of Ising
model on a planar lattice can be formulated as a dimer model on an associated planar lattice
[5, 6]. It is also well known that there is a bijection between close-packed dimer cover-
ings and spanning tree configurations on two related planar lattices [7]. A recent review on
the enumeration of close-packed dimers on two-dimensional regular lattices is summarized
in [8]. It is of interest to consider dimer coverings on self-similar fractal lattices which have
scaling invariance rather than translational invariance. Fractals are geometric structures of
generally noninteger Hausdorff dimension realized by repeated construction of an elemen-
tary shape on progressively smaller length scales [9, 10]. A well-known example of fractal
is the Sierpinski gasket which has been extensively studied in several contexts [11–28]. In-
stead of using the method of Kasteleyn, it is more natural to use renormalization scheme
[11, 12] to solve the dimer problem on the Sierpinski gasket which has finite ramification.
We have succeeded in obtaining recursion relations for the more general number of dimer-
monomers on the Sierpinski gasket [29], but the corresponding entropy does not assume a
simple form. As we turn to the dimer model on the Sierpinski gasket, we observe that the
recursion relations in [29] can be simplified, which allow us to solve entropies exactly for
the two dimensional cases and calculate numbers of dimer coverings to higher dimension or
side length reported below. A dimer coverings will leave at least one vertex uncovered when
the total number of vertices is an odd number, e.g., the rectangular lattice with both length
and width odd [30, 31]. The vacancies that are not covered by any dimers can be considered
as occupied by monomers. Here when the number of vertices for a certain type of Sierpinski
gasket is always an odd number, we shall allow a vacancy occurs on one of the outmost
vertices. The purpose of this paper is to derive rigorously the numbers of dimer coverings
on the two-dimensional Sierpinski gasket and its generalization, and obtain upper and lower
bounds for the entropy on the Sierpinski gasket with dimension equal to three, four or five.

2 Preliminaries

We first recall some relevant definitions in this section. A connected graph (without loops)
G = (V ,E) is defined by its vertex (site) and edge (bond) sets V and E [32, 33]. Let
v(G) = |V | be the number of vertices and e(G) = |E| the number of edges in G. The
degree or coordination number ki of a vertex vi ∈ V is the number of edges attached to it.
A k-regular graph is a graph with the property that each of its vertices has the same degree
k. In general, one can associate a dimer (monomer) weight to each dimer (monomer) (see,
for example [30]). For simplicity, all dimer (monomer) weights are set to one throughout
this paper.

When the size of the graph increases as v(G) → ∞, the number of dimer coverings
N(G) grows exponentially in v(G). Here N(G) is the number of close-packed dimers when
v(G) is an even number, and it is the number of almost close-packed dimers with a vacancy
as mentioned above. The entropy of absorption of diatomic molecules per site is given by

SG = lim
v(G)→∞

lnN(G)

v(G)
, (2.1)
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Fig. 1 The first four stages n = 0,1,2,3 of the two-dimensional Sierpinski gasket SG2(n)

Fig. 2 The generalized
two-dimensional Sierpinski
gasket SG2,b(n) with b = 3 at
stage n = 1, 2

where G, when used as a subscript in this manner, implicitly refers to the thermodynamic
limit. Notice that we define the entropy per site rather than entropy per dimer. They differ
by a factor of two in the thermodynamic limit.

The construction of the two-dimensional Sierpinski gasket SG2(n) at stage n is shown
in Fig. 1. At stage n = 0, it is an equilateral triangle; while stage n + 1 is obtained by the
juxtaposition of three n-stage structures. In general, the Sierpinski gaskets SGd can be built
in any Euclidean dimension d with fractal dimensionality D = ln(d + 1)/ ln 2 [14]. For the
Sierpinski gasket SGd(n), the numbers of edges and vertices are given by

e(SGd(n)) =
(

d + 1

2

)
(d + 1)n = d

2
(d + 1)n+1, (2.2)

v(SGd(n)) = d + 1

2
[(d + 1)n + 1]. (2.3)

Except the (d + 1) outmost vertices which have degree d , all other vertices of SGd(n) have
degree 2d . In the large n limit, SGd is 2d-regular.

The Sierpinski gasket can be generalized, denoted as SGd,b(n), by introducing the side
length b which is an integer larger or equal to two [34]. The generalized Sierpinski gasket at
stage n + 1 is constructed with b layers of stage n hypertetrahedrons. The two-dimensional
SG2,b(n) with b = 3 at stage n = 1,2 are illustrated in Fig. 2, and those with b = 4,5 at
stage n = 1 in Fig. 3. The ordinary Sierpinski gasket SGd(n) corresponds to the b = 2 case,
where the index b is neglected for simplicity. The Hausdorff dimension for SGd,b is given
by D = ln

(
b+d−1

d

)
/ lnb [34]. For the two-dimensional Sierpinski gasket SG2,b(n) that will
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Fig. 3 The generalized
two-dimensional Sierpinski
gasket SG2,b(n) with b = 4,5 at
stage n = 1

Fig. 4 Illustration for the configurations f2,b(n), g2,b(n), h2,b(n), and t2,b(n). Only the three outmost
vertices are shown explicitly, where each open circle is vacant and each solid circle is occupied by a dimer

be considered here, the numbers of edges and vertices are given by

e(SG2,b(n)) = 3

[
b(b + 1)

2

]n

, (2.4)

v(SG2,b(n)) = b + 4

b + 2

[
b(b + 1)

2

]n

+ 2(b + 1)

b + 2
. (2.5)

Notice that SGd,b is not k-regular even in the thermodynamic limit.

3 The Number of Dimer Coverings on SG2,b(n) with b = 2,3,4,5

In this section we derive rigorously the numbers of dimer coverings on the two-dimensional
Sierpinski gasket SG2(n), equivalently SG2,2(n), and the generalized SG2,b(n) with b =
3,4,5. Let us start with the definitions of the quantities to be used. They are illustrated in
Fig. 4, where only the outmost vertices of SG2,b(n) are shown.

Definition 3.1 Consider the generalized two-dimensional Sierpinski gasket SG2,b(n) at
stage n. (i) Define f2,b(n) as the number of dimer coverings such that the three outmost
vertices are vacant. (ii) Define g2,b(n) as the numbers of dimer coverings such that one cer-
tain outmost vertex, say the topmost vertex as illustrated in Fig. 4, is occupied by a dimer
while the other two outmost vertices are vacant. (iii) Define h2,b(n) as the numbers of dimer
coverings such that one certain outmost vertex, say the topmost vertex as illustrated in Fig. 4,
is vacant while the other two outmost vertices are occupied by dimers. (iv) Define t2,b(n) as
the number of dimer coverings such that all three outmost vertices are occupied by dimers.

3.1 SG2(n)

For the ordinary two-dimensional Sierpinski gasket, we use the notations f2(n), g2(n),
h2(n), and t2(n) for simplicity. Because of rotational symmetry, there are three possible
g2(n) and three possible h2(n) for non-negative integer n. The initial values at stage zero
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Fig. 5 Illustration for the
expression of f2(2m + 2)

Fig. 6 Illustration for the
expression of h2(2m + 2)

Fig. 7 Illustration for the
expression of g2(2m + 1)

Fig. 8 Illustration for the
expression of t2(2m + 1)

are f2(0) = 1, g2(0) = 0, h2(0) = 1, t2(0) = 0. The values at stage one are f2(1) = 0,
g2(1) = 2, h2(1) = 0, t2(1) = 2. The value zero indicates that no such configurations are
allowed. By (2.3), we have

v(SG2(n)) = 3

2
(3n + 1) = 3n + 2 + n +

n∑
j=2

(
n

j

)
2j−1, (3.1)

where the Binomial expansion is used for 3n = (2 + 1)n, such that the number of vertices
for SG2(n) is odd for even n and even for odd n. Therefore, f (n), h(n) are always zero for
odd n and g(n), t (n) are always zero for even n. Let us denote odd n as 2m + 1 and even n

as 2m with non-negative integer m in the following discussion for SG2(n). These quantities
satisfy simple recursion relations.

Lemma 3.1 For any m ≥ 0,

f2(2m + 2) = 2g3
2(2m + 1), (3.2)

h2(2m + 2) = 2g2
2(2m + 1)t2(2m + 1), (3.3)

g2(2m + 1) = 2f2(2m)h2
2(2m), (3.4)

t2(2m + 1) = 2h3
2(2m). (3.5)

Proof The Sierpinski gasket SG2(n + 1) is composed of three SG2(n) with three pairs of
vertices identified. For each pair of identified vertices, either one of them is originally oc-
cupied by a dimer while the other one is vacant. The number f2(2m + 2) for SG2(2m + 2)

consists of two configurations where all three of the SG2(2m + 1) are in the g2(2m + 1)

status as illustrated in Fig. 5, such that (3.2) is verified.
Similarly, h2(2m + 2) and g2(2m + 1), t2(2m + 1) can be obtained with appropriate

configurations of its three constituting blocks as illustrated in Figs. 6, 7 and 8 to verify (3.3),
(3.4) and (3.5), respectively. �

It is elementary to solve f2(n), g2(n), h2(n), t2(n) in order to obtain the entropy for SG2.
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Theorem 3.1 For the two-dimensional Sierpinski gasket SG2(n) at stage n = 2m or n =
2m + 1, {

f2(2m) = h2(2m) = 2γ2(2m),

f2(2m + 1) = h2(2m + 1) = 0,
(3.6)

{
g2(2m) = t2(2m) = 0,

g2(2m + 1) = t2(2m + 1) = 2γ2(2m+1),
(3.7)

where the exponent is

γ2(n) = 1

2
(3n − 1). (3.8)

Define the number of dimer coverings N(SG2(n)) in (2.1) equal to h2(n = 2m) and equal to
t2(n = 2m + 1) for even and odd n, respectively. With v(SG2(n)) = 3

2 (3n + 1), the entropy
is given by

SSG2 = 1

3
ln 2 � 0.23104906018 . . . . (3.9)

It is intriguing that this entropy is the same as that for the Kagomé lattice [8, 35]. They
share a common feature that they are both four-regular graphs in the thermodynamics limit
(without worrying about boundary vertices). In passing, we notice that the above result is
valid as one vacancy is allowed on a outmost vertex for even n with odd number of vertices.
If one insists to always use the number of close-packed dimer coverings t2(n) in (2.1), the
entropy does not exist.

3.2 SG2,3(n)

For the generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 3, we have

v(SG2,3(n)) = 7(6)n + 8

5
= 6n + 2 + 2

n∑
j=1

(
n

j

)
5j−1 (3.10)

by (2.5), such that the number of vertices is equal to three for n = 0 and becomes even for all
positive integer n. Therefore, f2,3(n) and h2,3(n) are always zero for positive integer n, while
the initial values remain f2,3(0) = 1, g2,3(0) = 0, h2,3(0) = 1 and t2,3(0) = 0. The proof of
the following recursion relations for g2,3(n) and t2,3(n) is given in the online archive version
[36] of this paper but is omitted here to save space.

Lemma 3.2 For any positive integer n,

g2,3(n + 1) = 6g5
2,3(n)t2,3(n), (3.11)

t2,3(n + 1) = 6g4
2,3(n)t2

2,3(n), (3.12)

and for n = 0,

g2,3(1) = 6f 2
2,3(0)h4

2,3(0) = 6, (3.13)

t2,3(1) = 6f2,3(0)h5
2,3(0) = 6. (3.14)
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It is elementary to solve g2,3(n) and t2,3(n) for positive n in order to obtain the entropy
for SG2,3.

Theorem 3.2 For the generalized two-dimensional Sierpinski gasket SG2,3(n) at stage
n > 0,

g2,3(n) = t2,3(n) = 6γ2,3(n), (3.15)

where the exponent is

γ2,3(n) = 1

5
(6n − 1). (3.16)

Define the number of dimer coverings N(SG2,3(n)) in (2.1) equal to t2,3(n). With v(SG2,3(n)) =
(7(6)n + 8)/5, the entropy is given by

SSG2,3 = 1

7
ln 6 � 0.25596563846 . . . . (3.17)

3.3 SG2,4(n)

For the generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 4, we have

v(SG2,4(n)) = 4(10)n + 5

3
= 3 + 4

3

n∑
j=1

(
n

j

)
9j (3.18)

by (2.5), such that the number of vertices is always odd for any n. Therefore, g2,4(n) and
t2,4(n) are zero for all n, while the initial values remain f2,4(0) = 1, g2,4(0) = 0, h2,4(0) = 1
and t2,4(0) = 0. The proof of the following recursion relations for f2,4(n) and h2,4(n) is
given in the online archive version [36] of this paper but is omitted here to save space.

Lemma 3.3 For any non-negative integer n,

f2,4(n + 1) = 28f 4
2,4(n)h6

2,4(n), (3.19)

h2,4(n + 1) = 28f 3
2,4(n)h7

2,4(n). (3.20)

It is elementary to solve f2,4(n) and h2,4(n) in order to obtain the entropy for SG2,4.

Theorem 3.3 For the generalized two-dimensional Sierpinski gasket SG2,4(n) with non-
negative integer n,

f2,4(n) = h2,4(n) = 28γ2,4(n), (3.21)

where the exponent is

γ2,4(n) = 1

9
(10n − 1). (3.22)

Define the number of dimer coverings N(SG2,4(n)) in (2.1) equal to h2,4(n). With
v(SG2,4(n)) = (4(10)n + 5)/3, the entropy is given by

SSG2,4 = 1

12
ln 28 � 0.27768370918 . . . . (3.23)
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3.4 SG2,5(n)

For the generalized two-dimensional Sierpinski gasket SG2,b(n) with b = 5, we have

v(SG2,5(n)) = 9(15)n + 12

7
= 15n + 2 + 2

7

n∑
j=1

(
n

j

)
14j (3.24)

by (2.5), such that the number of vertices is always odd for any n. Therefore, g2,5(n) and
t2,5(n) are zero for all n, while the initial values remain f2,5(0) = 1, g2,5(0) = 0, h2,5(0) = 1
and t2,5(0) = 0. The figures of the recursion relations for f2,5(n) and h2,5(n) are too many
to be shown here, and we state the following Lemma without proof.

Lemma 3.4 For any non-negative integer n,

f2,5(n + 1) = 200f 6
2,5(n)h9

2,5(n), (3.25)

h2,5(n + 1) = 200f 5
2,5(n)h10

2,5(n). (3.26)

It is elementary to solve f2,5(n) and h2,5(n) in order to obtain the entropy for SG2,5.

Theorem 3.4 For the generalized two-dimensional Sierpinski gasket SG2,5(n) with non-
negative integer n,

f2,5(n) = h2,5(n) = 200γ2,5(n), (3.27)

where the exponent is

γ2,5(n) = 1

14
(15n − 1). (3.28)

Define the number of dimer coverings N(SG2,5(n)) in (2.1) equal to h2,5(n). With
v(SG2,5(n)) = (9(15)n + 12)/7, the entropy is given by

SSG2,5 = 1

18
ln 200 � 0.29435096480 . . . . (3.29)

As the generalized two-dimensional Sierpinski gasket SG2,b(n) for any b is planar, it
appears that the number of dimer coverings can be solved exactly. However, the number of
configurations to be considered increases as b increases and the recursion relations must be
derived individually for each b. We have been unable to obtain a general expression of the
number of dimer coverings on SG2,b(n) for arbitrary b.

4 The Number of Dimer Coverings on SGd(n) with d = 3,4,5

In this section we present the number of dimer coverings on the Sierpinski gasket SGd(n)

with d = 3,4,5 which is not planar. Instead of solving exactly the entropies for these Sier-
pinski gaskets, we obtain accurate upper and lower bounds for them.
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Fig. 9 Illustration for the dimer coverings f3(n), h3(n) and s3(n). Only the four outmost vertices are shown
explicitly, where each open circle is vacant and each solid circle is occupied by a dimer

Fig. 10 Illustration for the expression of f3(n + 1). The multiplication of four on the right-hand-side corre-
sponds to the four possible orientations of SG3(n + 1)

4.1 SG3(n)

For the three-dimensional Sierpinski gasket SG3(n), we use the following definitions.

Definition 4.1 Consider the three-dimensional Sierpinski gasket SG3(n) at stage n. (i) De-
fine f3(n) as the number of dimer coverings such that the four outmost vertices are vacant.
(ii) Define h3(n) as the number of dimer coverings such that two certain outmost vertices
are occupied by dimers and the other two outmost vertices are vacant. (iii) Define s3(n) as
the number of dimer coverings such that all four outmost vertices are occupied by dimers.

As the number of vertices for SG3(n) is always even by (2.3), we do not have the dimer
coverings such that one certain outmost vertices is occupied by a dimer and the other three
outmost vertices are vacant, or one certain outmost vertices is vacant and the other three out-
most vertices are occupied by dimers. The quantities f3(n), h3(n), and s3(n) are illustrated
in Fig. 9, where only the outmost vertices are shown. There are

(4
2

) = 6 equivalent h3(n).
The initial values at stage zero are f3(0) = 1, h3(0) = 1, s3(0) = 3. These quantities satisfy
recursion relations.

Lemma 4.1 For any non-negative integer n,

f3(n + 1) = 8f3(n)h3
3(n), (4.1)

h3(n + 1) = 4f3(n)h2
3(n)s3(n) + 4h4

3(n), (4.2)

s3(n + 1) = 8h3
3(n)s3(n). (4.3)

Proof The Sierpinski gasket SG3(n + 1) is composed of four SG3(n) with six pairs of ver-
tices identified. The number f3(n + 1) for non-negative n consists of eight configurations
where one of the SG3(n) are in the f3(n) status and the other three are in the h3(n) status as
illustrated in Fig. 10, such that (4.1) is verified.

Similarly, h3(n + 1) and s3(n + 1) for SG3(n + 1) can be obtained with appropriate
configurations of its four constituting SG3(n) as illustrated in Figs. 11, and 12 to verify (4.2)
and (4.3), respectively. �
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Fig. 11 Illustration for the
expression of h3(n + 1). The
multiplication of two on the
right-hand-side corresponds to
the reflection symmetry with
respect to the central vertical axis

Fig. 12 Illustration for the
expression of s3(n + 1). The
multiplication of four on the
right-hand-side corresponds to
the four possible orientations of
SG3(n + 1)

The values of f3(n), h3(n), s3(n) for small n can be evaluated recursively by (4.1)–(4.3),
but they grow exponentially, and do not have simple integer factorizations. To estimate the
value of entropy for SG3, we define the ratio

α3(n) = h3(n)

f3(n)
, (4.4)

and its limit

α3 ≡ lim
n→∞α3(n). (4.5)

Lemma 4.2 Sequence {α3(n)}∞
n=1 decreases monotonically. The limit α3 is equal to

√
3.

Proof From (4.1) and (4.3), the ratio s3(n)/f3(n) is invariant, that is equal to s3(0)/f3(0)

= 3. Equation (4.2) can be modified to be

h3(n + 1) = 12f 2
3 (n)h2

3(n) + 4h4
3(n). (4.6)

Although α3(0) = 1, it is clear that α3(n) is bounded below by
√

3 for positive integer n

because

h2
3(n + 1) − 3f 2

3 (n + 1) = [12f 2
3 (n)h2

3(n) − 4h4
3(n)]2 ≥ 0 (4.7)

for any n ≥ 0. It follows that α3(n) decreases for positive n because

h3(n)

f3(n)
− h3(n + 1)

f3(n + 1)
= h2

3(n) − 3f 2
3 (n)

2f3(n)h3(n)
≥ 0, (4.8)

which implies that the limit α3 exists. From (4.1) and (4.6), we have

h3(n + 1)

f3(n + 1)
= 3

2

f3(n)

h3(n)
+ 1

2

h3(n)

f3(n)
. (4.9)

By taking the large n limit in (4.9), α3 is solved to be
√

3. �



Dimer Coverings on the Sierpinski Gasket 641

The following general expressions for f3(n) and h3(n) can be established by induction.
For a non-negative integer m and any positive integer n > m, we have

f3(n) = 2
2(4)n−m+1−5−3(−1)n−m

10 f3(m)
2(4)n−m+3(−1)n−m

5

× h3(m)
3(4)n−m−3(−1)n−m

5

n−m∏
j=2

[3 + α2
3(n − j)] 3(4)j−1−3(−1)j−1

5 , (4.10)

h3(n) = 2
4n−m+1−5+(−1)n−m

5 f3(m)
2(4)n−m−2(−1)n−m

5 h3(m)
3(4)n−m+2(−1)n−m

5

×
n−m∏
j=1

[3 + α2
3(n − j)] 3(4)j−1+2(−1)j−1

5 . (4.11)

Here when n − m = 1, the product with lower limit two is defined to be one.
With above results, we have the following bounds for the entropy.

Lemma 4.3 The entropy for the number of dimer coverings on SG3(n) is bounded:

−√
3ε3(m)3

720(4)m
≤ SSG3 −

{
2 lnf3(m) + 3 lnh3(m) + 5 ln 2 + ln 3

10(4)m
+

√
3ε3(m)

40(4)m

}

≤
√

3ε3(m)2

40(4)m[2√
3 − ε3(m)] , (4.12)

where ε3(m) is defined as α3(m) − √
3 and m is a positive integer.

Proof Substituting N(G) = s3(n) = 3f3(n) in (2.1) for SG3, we have

SSG3 = lim
n→∞

ln 3f3(n)

2(4n + 1)
, (4.13)

where the factor of three in the logarithm can be neglected. By (4.10), we have

lnf3(n) = 2(4)n−m + 3(−1)n−m

5
lnf3(m)

+ 3(4)n−m − 3(−1)n−m

5
lnh3(m)

+ 2(4)n−m+1 − 5 − 3(−1)n−m

10
ln 2 + �3(n,m), (4.14)

where

�3(n,m) =
n−m∑
j=2

3(4)j−1 − 3(−1)j−1

5
ln[3 + α2

3(n − j)], (4.15)

which is bounded as follows.
By Lemma 4.2, we know ε3(n) decreases monotonically to zero for positive integer n.

ε3(1) = α3(1) − √
3 = 2 − √

3. It is easy to find, by (4.9), that

ε3(n + 1) = ε3(n)2

2(
√

3 + ε3(n))
. (4.16)
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It is clear that if X(m + 1) = X(m)2

c
for non-negative integer m with X(0) known and c

constant, then

X(m) = X(0)2m

c2m−1
. (4.17)

As ε3(n) in the denominator of (4.16) is close to zero when n is large, we have, for any
integer n ≥ m with m fixed,

ε3(n + m) = ε3(m)2n

(2
√

3)2n−1
(1 + o(n)), (4.18)

where o(n) → 0 as n → ∞ and o(n) is negative here. Replacing α3(m) in (4.15) by
√

3 +
ε3(m), �3(n,m) can be rewritten as

�3(n,m) =
n−m∑
j=2

3(4)j−1 − 3(−1)j−1

5
ln[6 + 2

√
3ε3(n − j) + ε3(n − j)2]. (4.19)

Since ε3(n) is small for positive n, the logarithmic term can be written as

ln[6 + 2
√

3ε3(n − j) + ε3(n − j)2] = ln 6 +
√

3

3
ε3(n − j)

[
1 − ξn,j ε3(n − j)2

18

]
, (4.20)

where ξn,j ∈ (0,1), so that

�3(n,m)

=
n−m∑
j=2

3(4)j−1 − 3(−1)j−1

5

{
ln 6 +

√
3ε3(n − j)

3

[
1 − ξn,j ε3(n − j)2

18

]}

=
n−m∑
j=2

3 ln 6

5
[(4)j−1 − (−1)j−1]

+
n−m∑
j=2

√
3ε3(n − j)

5
[(4)j−1 − (−1)j−1]

[
1 − ξn,j ε3(n − j)2

18

]
. (4.21)

Because the j = n − m term in the second summation gives the largest contribution among
other terms, it is easy to see that

4n−m−1
√

3ε3(m)(1 − ε3(m)2

18 )(1 + o(n))

5
≤ �3(n,m) − 4n−m ln 6

5
(1 + o(n)). (4.22)

On the other hand,
∑n−m

j=2 ε3(n − j)4j−1[1 − ξn,j ε3(n − j)2/18] in the second summation is

less than
∑n−m−2

i=0 4n−m−1ε3(m + i). Using (4.18) and the inequality

n−m−2∑
j=0

x2j = x +
n−m−2∑

j=1

x2j ≤ x +
n−m−2∑

j=1

x2j ≤ x + x2

1 − x2
= x

1 − x
(4.23)
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for any 0 < x < 1, we have

�3(n,m) − 4n−m ln 6

5
(1 + o(n)) ≤ 3(4)n−m

10
(1 + o(n))

n−m−2∑
i=0

(
ε3(m)

2
√

3

)2i

≤ 3(4)n−mε3(m)(1 + o(n))

10[2√
3 − ε3(m)] . (4.24)

The proof is completed by taking the infinite n limit in (4.13). �

The difference between the upper and lower bounds for SSG3 quickly converges to zero
as m increases, and we have the following proposition.

Proposition 4.1 The entropy for the number of dimer coverings on the three-dimensional
Sierpinski gasket SG3(n) in the large n limit is SSG3 = 0.42896389912 . . . .

By (4.18), we know

ε3(7) ≤ 2
√

3

(
2 − √

3

2
√

3

)26

, (4.25)

such that SSG3 can be calculated with more than a hundred significant figures accurate when
m is equal to seven in (4.12). It is too lengthy to be included here and is available from the
authors on request. The above method to find upper and lower bounds for the entropy will
be used for SGd(n) with d = 4,5 in the following subsections.

Alternatively, f3(n) can be given as a product expression derived below.1 Define the ratio

ᾱ3(n) = h3(n)√
3f3(n)

. (4.26)

We have ᾱ3(0) = √
3/3, ᾱ3(1) = 2

√
3/3, etc. By Lemma 4.2, ᾱ3(n) decreases to one from

above for positive integer n. Equation (4.9) can be rewritten as

ᾱ3(n + 1) = 1

2

(
ᾱ3(n) + 1

ᾱ3(n)

)
. (4.27)

Changing the variable to

β3(n) = ᾱ3(n) − 1

ᾱ3(n) + 1
, (4.28)

this equation becomes [37]

β3(n + 1) = β3(n)2, (4.29)

which can be solved such that

β3(n) = β3(0)2n

, (4.30)

1The authors are indebted to D. Dhar for this derivation.
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where β3(0) = √
3 − 2. From (4.28), we obtain

ᾱ3(n) = 1 + β3(n)

1 − β3(n)
= 1 + (

√
3 − 2)2n

1 − (
√

3 − 2)2n
. (4.31)

Substituting h3(n) = √
3ᾱ3(n)f3(n) into (4.1), f3(n) can be expressed in terms of ᾱ3(n):

f3(n) = 8
4n−1

3 3
4n−1

2

n−1∏
j=0

ᾱ3(j)4n−1−j

, (4.32)

such that the number of dimer coverings is given by

s3(n) = 8
4n−1

3 3
4n+1

2

n−1∏
j=0

ᾱ3(j)4n−1−j

. (4.33)

Finally, the entropy in (4.13) is given by

SSG3 = 1

2
ln 2 + 1

4
ln 3 + 3

2

∞∑
j=0

ln ᾱ3(j)

4j+1
, (4.34)

where ln ᾱ3(j) approaches to zero for large j . We notice that if we estimate the value of SSG3

with the summation in (4.34) evaluated up to j equal to a positive integer m, the deviation
from the exact value is in the same order as the difference between the upper and lower
bounds given in Lemma 4.3 using the same integer m.

4.2 SG4(n)

For the four-dimensional Sierpinski gasket SG4(n), we use the following definitions.

Definition 4.2 Consider the four-dimensional Sierpinski gasket SG4(n) at stage n. (i) Define
f4(n) as the number of dimer coverings such that the five outmost vertices are vacant. (ii)
Define h4(n) as the number of dimer coverings such that two certain outmost vertices are
occupied by dimers and the other three outmost vertices are vacant. (iii) Define s4(n) as the
number of dimer coverings such that one certain outmost vertex is vacant and the other four
outmost vertices are occupied by dimers.

By (2.3), we have

v(SG4(n)) = 5

2
(5n + 1) = 2(5)n + 3 + 1

2

n∑
j=1

(
n

j

)
4j , (4.35)

such that the number of vertices for SG4(n) is always odd. Therefore, we do not have the
dimer coverings such that one certain outmost vertices is occupied by a dimer and the other
four outmost vertices are vacant, or three certain outmost vertices are occupied by dimers
and the other two outmost vertices are vacant, or all five outmost vertices are occupied by
dimers. The quantities f4(n), h4(n), and s4(n) are illustrated in Fig. 13, where only the
outmost vertices are shown. There are

(5
2

) = 10 equivalent h4(n) and
(5

1

) = 5 equivalent
s4(n). The initial values at stage zero are again f4(0) = 1, h4(0) = 1, s4(0) = 3.

We write a computer program to obtain following recursion relations.
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Fig. 13 Illustration for the dimer
coverings f4(n), h4(n), s4(n).
Only the five outmost vertices are
shown explicitly, where each
open circle is vacant and each
solid circle is occupied by a
dimer

Lemma 4.4 For any non-negative integer n,

f4(n + 1) = 40f4(n)h3
4(n)s4(n) + 24h5

4(n), (4.36)

h4(n + 1) = 24f4(n)h2
4(n)s2

4(n) + 40h4
4(n)s4(n), (4.37)

s4(n + 1) = 8f4(n)h4(n)s3
4(n) + 56h3

4(n)s2
4 (n). (4.38)

The values of f4(n), h4(n), s4(n) for small n can be evaluated recursively by (4.36)–
(4.38), but they grow exponentially, and do not have simple integer factorizations. To esti-
mate the value of entropy for SG4, we define the ratios

α4(n) = h4(n)

f4(n)
, β4(n) = s4(n)

h4(n)
, (4.39)

and their limits

α4 ≡ lim
n→∞α4(n), β4 ≡ lim

n→∞β4(n). (4.40)

Lemma 4.5 Sequence {α4(n)}∞
n=1 decreases monotonically while sequence {β4(n)}∞

n=1 in-
creases monotonically. The ratio β4(n)/α4(n) for positive n increases monotonically to one.

The proof of this Lemma is similar to that of Lemma 4.2, and is omitted here. It is
available in the online archive version [36] of this paper. The numerical value of α4 and β4

is given by

α4 = β4 = 0.850772150002 . . . (4.41)

where more than a hundred significant figures can be evaluated when stage n in (4.39) is
equal to seven.

The following general expressions for h4(n) and s4(n) can be established by induction.
For a non-negative integer m and any positive integer n > m, we have

h4(n) = 2
3(5)n−m−3

4 h4(m)
3(5)n−m+1

4 s4(m)
5n−m−1

4

×
n−m∏
i=1

[
5 + 3

β4(n − i)

α4(n − i)

] 3(5)i−1+1
4

n−m∏
j=2

[
7 + β4(n − j)

α4(n − j)

] 5j−1−1
4

, (4.42)

s4(n) = 2
3(5)n−m−3

4 h4(m)
3(5)n−m−3

4 s4(m)
5n−m+3

4

×
n−m∏
i=2

[
5 + 3

β4(n − i)

α4(n − i)

] 3(5)i−1−3
4

n−m∏
j=1

[
7 + β4(n − j)

α4(n − j)

] 5j−1+3
4

. (4.43)

Here when n − m = 1, the products with lower limit two are defined to be one.
From above results, we have the following bounds for the entropy.
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Lemma 4.6 The entropy for the number of dimer coverings on SG4(n) is bounded:

− 7ε4(m)2

640(5)m[1 − ε4(m)

16 ] ≤ SSG4 −
{

3 lnh4(m) + ln s4(m) + 6 ln 2

10(5)m
− ε4(m)

40(5)m

}

≤ 0, (4.44)

where m is a positive integer and ε4(n) is defined as 1 − β4(n)/α4(n).

The proof of this Lemma is similar to that of Lemma 4.3, and is omitted here. It is avail-
able in the online archive version [36] of this paper. The difference between the upper and
lower bounds for SSG4 quickly converges to zero as m increases, and we have the following
proposition.

Proposition 4.2 The entropy for the number of dimer coverings on the four-dimensional
Sierpinski gasket SG4(n) in the large n limit is SSG4 = 0.56337479920 . . . .

The numerical value of SSG4 can be calculated with more than a hundred significant
figures accurate when m in (4.44) is equal to six. It is too lengthy to be included here and is
available from the authors on request.

4.3 SG5(n)

For the five-dimensional Sierpinski gasket SG5(n), we use the following definitions.

Definition 4.3 Consider the five-dimensional Sierpinski gasket SG5(n) at stage n. (i) Define
f5(n) as the number of dimer coverings such that the six outmost vertices are vacant. (ii) De-
fine g5(n) as the number of dimer coverings such that one certain outmost vertex is occupied
by a dimer and the other five outmost vertices are vacant. (iii) Define h5(n) as the number
of dimer coverings such that two certain outmost vertices are occupied by dimers and the
other four outmost vertices are vacant. (iv) Define r5(n) as the number of dimer coverings
such that three certain outmost vertices are occupied by dimers and the other three outmost
vertices are vacant. (v) Define s5(n) as the number of dimer coverings such that two certain
outmost vertices are vacant and the other four outmost vertices are occupied by dimers. (vi)
Define t5(n) as the number of dimer coverings such that one certain outmost vertex is vacant
and the other five outmost vertices are occupied by dimers. (vii) Define u5(n) as the number
of dimer coverings such that all six outmost vertices are occupied by dimers.

The quantities f5(n), g5(n), h5(n), r5(n), s5(n), t5(n) and u5(n) are illustrated in Fig. 14,
where only the outmost vertices are shown. The initial values are f5(0) = 1, g5(0) = 0,
h5(0) = 1, r5(0) = 0, s5(0) = 3, t5(0) = 0, u5(0) = 15. For the five-dimensional Sierpinski
gasket SG5(n), the number of vertices is equal to six for n = 0 and odd for all positive inte-
ger n by (2.3). Therefore, f5(n), h5(n), s5(n), u5(n) are always zero for positive integer n.
There are

(6
1

) = 6 equivalent g5(n) and t5(n), and
(6

3

) = 20 equivalent r5(n).
We write a computer program to obtain following recursion relations.

Lemma 4.7 For any positive integer n,

g5(n + 1) = 40g3
5(n)r5(n)t2

5 (n) + 560g2
5(n)r3

5 (n)t5(n) + 424g5(n)r5
5 (n), (4.45)
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Fig. 14 Illustration for the dimer
coverings f5(n), g5(n), h5(n),
r5(n), s5(n), t5(n), u5(n). Only
the six outmost vertices are
shown explicitly, where each
open circle is vacant and each
solid circle is occupied by a
dimer

r5(n + 1) = 4g3
5(n)t3

5 (n) + 252g2
5(n)r2

5 (n)t2
5 (n) + 636g5(n)r4

5 (n)t5(n) + 132r6
5 (n),

(4.46)

t5(n + 1) = 40g2
5(n)r5(n)t3

5 (n) + 560g5(n)r3
5 (n)t2

5 (n) + 424r5
5 (n)t5(n), (4.47)

and for n = 0,

g5(1) = 280f5(0)h2
5(0)s3

5 (0) + 40f5(0)h3
5(0)s5(0)u5(0) + 680h4

5(0)s2
5 (0)

+ 24h5
5(0)u5(0) = 15840, (4.48)

r5(1) = 72f5(0)h2
5(0)s2

5(0)u5(0) + 120f5(0)h5(0)s4
5 (0) + 712h3

5(0)s3
5 (0)

+ 120h4
5(0)s5(0)u5(0) = 44064, (4.49)

t5(1) = 40f5(0)h5(0)s3
5(0)u5(0) + 280h3

5(0)s2
5 (0)u5(0) + 24f5(0)s5

5 (0)

+ 680h2
5(0)s4

5(0) = 114912. (4.50)

The values of g4(n), r4(n), t4(n) for small positive n can be evaluated recursively by
(4.45)–(4.47), but they grow exponentially, and do not have simple integer factorizations.
To estimate the value of entropy for SG5, we define the ratio

α5(n) = r5(n)

g5(n)
, (4.51)

and its limit

α5 ≡ lim
n→∞α5(n). (4.52)

From (4.45) and (4.47), the ratio t5(n)/g5(n) is invariant. Defined the ratio as c, then

c = t5(1)

g5(1)
= 399

55
. (4.53)

Equations (4.45) and (4.46) can be modified to be

g5(n + 1) = 8g5
5(n)r5(n)P5(n), (4.54)

r5(n + 1) = 4g6
5(n)Q5(n), (4.55)
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where

P5(n) = 5c2 + 70cα2
5(n) + 53α4

5(n), (4.56)

Q5(n) = c3 + 63c2α2
5(n) + 159cα4

5(n) + 33α6
5(n). (4.57)

Lemma 4.8 Sequence {α5(n)}∞
n=1 decreases monotonically. The limit α5 is equal to√

399/55.

The proof of this Lemma is similar to that of Lemma 4.2, and is omitted here. It is
available in the online archive version [36] of this paper.

The following general expressions for g5(n) and r5(n) can be established by induction.
For a non-negative integer m and any positive integer n > m, we have

g5(n) = 2
8(6)n−m−7−(−1)n−m

14 g5(m)
6n−m+1+(−1)n−m

7 r5(m)
6n−m−(−1)n−m

7

×
n−m∏
i=1

P5(n − i)
6i−(−1)i

7

n−m∏
j=2

Q5(n − j)
6j−1+(−1)j

7 , (4.58)

r5(n) = 2
4(6)n−m−7+3(−1)n−m

7 g5(m)
6n−m+1−6(−1)n−m

7 r5(m)
6n−m+6(−1)n−m

7

×
n−m∏
i=2

P5(n − i)
6i+6(−1)i

7

n−m∏
j=1

Q5(n − j)
6j−1−6(−1)j

7 . (4.59)

Here when n − m = 1, the products with lower limit two are defined to be one.
From above results, we have the following bounds for the entropy.

Lemma 4.9 The entropy for the number of dimer coverings on SG5(n) is bounded:

0 ≤ SSG5 −
{

2 lng5(m)

7(6)m
+ ln r5(m)

21(6)m
+ 14 ln 2

21(6)m
+ ln c

7(6)m
+ 9ε5(m)

56
√

c(6)m

}

≤ 279ε5(m)2

448c(6)m[1 − ε5(m)

8
√

c
] , (4.60)

where m is a positive integer and ε5(n) is defined as α5(n) − √
c.

The proof of this Lemma is similar to that of Lemma 4.3, and is omitted here. It is avail-
able in the online archive version [36] of this paper. The difference between the upper and
lower bounds for SSG5 quickly converges to zero as m increases, and we have the following
proposition.

Proposition 4.3 The entropy for the number of dimer coverings on the five-dimensional
Sierpinski gasket SG5(n) in the large n limit is SSG5 = 0.67042810305 . . . .

The numerical value of SSG5 can be calculated with more than a hundred significant
figures accurate when m in (4.60) is equal to six. It is too lengthy to be included here and is
available from the authors on request.

We notice that the convergence of the upper and lower bounds of the entropy for dimer
coverings on SGd(n) is about the same for d = 3,4,5, similar to the results observed in [29]
for the dimer-monomer model on SGd(n).
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Table 1 Numerical values of SSGd,b
, SLd

and the ratios SSGd,b
/zSGd,b

, SSGd
/SLd

. The last digits given
are rounded off

d b D SSGd,b
SSGd,b

/zSGd,b
SLd

SSGd
/SLd

2 2 1.585 1
3 ln 2 � 0.2310490602 0.3520510271 G/π � 0.2915609040 0.7924555624

2 3 1.631 1
7 ln 6 � 0.2559656385 0.3811183712 – –

2 4 1.661 1
12 ln 28 � 0.2776837092 0.4054532859 – –

2 5 1.683 1
18 ln 200 � 0.2943509648 – – –

3 2 2 0.4289638991 0.5491430497 0.4465 0.9608

4 2 2.322 0.5633747992 0.6425502211 – –

5 2 2.585 0.6704281031 – – –

5 Summary

Compare the present results with those in [29], it is clear that the number of dimer coverings
on the Sierpinski gasket SGd(n) is less than that of dimer-monomers. The asymptotic growth
constant zSGd,b

for the dimer-monomer model defined as (2.1) of [29] corresponds to the
entropy SSGd,b

for the dimer coverings defined in (2.1). We summarize the values of SSGd,b

and the ratio SSGd,b
/zSGd,b

in Table 1. The value of SSGd
increases as dimension d increases.

Similarly for the generalized two-dimensional Sierpinski gasket, the exact value of SSG2,b

increases slightly as b increases. For the cases studied, the ratio SSGd
/zSGd

also increases as
dimension d increases, and SSG2,b

/zSG2,b
increases slightly as b increases.

It is interesting to compare entropy of dimer coverings on the Sierpinski gasket SGd with
that on the d-dimensional hypercubic lattice Ld which is also 2d-regular. The entropy of the
square lattice was known to be G/π [4], where G is the Catalan number, for decades, while
the entropy of the simple cubic lattice was estimated to be 0.44647 [38]. They are relatively
larger than the entropies on SGd with d = 2,3 presented here. The values of SLd

and the
ratio SSGd

/SLd
for d = 2,3 are given in Table 1. It appears that as the d increases, the value

SSGd
approaches to the value SLd

from below. As we have obtained the highly accurate value
for the entropy on SGd with d = 4,5, there is no numerical estimation for the entropy on Ld

with d ≥ 4, to the best of our knowledge.

Acknowledgements We would like to thank Prof. D. Dhar for helpful discussions. The research of S.C.C.
was partially supported by the NSC grant NSC-96-2112-M-006-001 and NSC-96-2119-M-002-001. The re-
search of L.C.C was partially supported by TJ & MY Foundation and NSC grant NSC 96-2115-M-030-002.

References

1. Fowler, R.H., Rushbrooke, G.S.: An attempt to extend the statistical theory of perfect solutions. Trans.
Faraday Soc. 33, 1272–1294 (1937)

2. Kasteleyn, P.W.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic
lattice. Physica 27, 1209–1225 (1961)

3. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—An exact result. Philos. Mag.
6, 1061–1063 (1961)

4. Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)
5. Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4, 287–293 (1963)
6. Fisher, M.E.: On dimer solution of planar Ising models. J. Math. Phys. 7, 1776–1781 (1966)
7. Temperley, H.N.V.: In: McDonough, T.P., Mavron, V.C. (eds.) Combinatorics. London Math. Soc. Lec-

ture Note Series, vol. 13, pp. 202–204. Cambridge University Press, Cambridge (1974)
8. Wu, F.Y.: Dimers on two-dimensional lattices. Int. J. Mod. Phys. B 20, 5357–5371 (2006)



650 S.-C. Chang, L.-C. Chen

9. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)
10. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, New

York (2003)
11. Dhar, D.: Lattices of effectively nonintegral dimensionality. J. Math. Phys. 18, 577–585 (1977)
12. Dhar, D.: Self-avoiding random walks: some exactly soluble cases. J. Math. Phys. 19, 5–11 (1978)
13. Gefen, Y., Mandelbrot, B.B., Aharony, A.: Critical phenomena on fractal lattices. Phys. Rev. Lett. 45,

855–858 (1980)
14. Gefen, Y., Aharony, A., Mandelbrot, B.B., Kirkpatrick, S.: Solvable fractal family, and its possible rela-

tion to the backbone at percolation. Phys. Rev. Lett. 47, 1771–1774 (1981)
15. Rammal, R., Toulouse, G.: Spectrum of the Schrödinger equation on a self-similar structure. Phys. Rev.

Lett. 49, 1194–1197 (1982)
16. Alexander, S.: Superconductivity of networks. A percolation approach to the effects of disorder. Phys.

Rev. B 27, 1541–1557 (1983)
17. Domany, E., Alexander, S., Bensimon, D., Kadanoff, L.P.: Solutions to the Schrödinger equation on

some fractal lattices. Phys. Rev. B 28, 3110–3123 (1983)
18. Gefen, Y., Aharony, A., Mandelbrot, B.B.: Phase transitions on fractals: I. Quasi-linear lattices. J. Phys.

A: Math. Gen. 16, 1267–1278 (1983)
19. Gefen, Y., Aharony, A., Shapir, Y., Mandelbrot, B.B.: Phase transitions on fractals: II. Sierpinski gaskets.

J. Phys. A: Math. Gen. 17, 435–444 (1984)
20. Gefen, Y., Aharony, A., Mandelbrot, B.B.: Phase transitions on fractals: III. Infinitely ramified lattices.

J. Phys. A: Math. Gen. 17, 1277–1289 (1984)
21. Guyer, R.A.: Diffusion on the Sierpinski gaskets: a random walker on a fractally structured object. Phys.

Rev. A 29, 2751–2755 (1984)
22. Hattori, K., Hattori, T., Kusuoka, S.: Self-avoiding paths on the pre-Sierpinski gasket. Probab. Theory

Relat. Fields 84, 1–26 (1990)
23. Hattori, T., Kusuoka, S.: The exponent for the mean square displacement of self-avoiding random walk

on the Sierpinski gasket. Probab. Theory Relat. Fields 93, 273–284 (1992)
24. Dhar, D., Dhar, A.: Distribution of sizes of erased loops for loop-erased random walks. Phys. Rev. E 55,

R2093–R2096 (1997)
25. Daerden, F., Vanderzande, C.: Sandpiles on a Sierpinski gasket. Physica A 256, 533–546 (1998)
26. Kozak, J.J., Balakrishnan, V.: Analytic expression for the mean time to absorption for a random walker

on the Sierpinski gasket. Phys. Rev. E 65, 021105 (2002)
27. Kozak, J.J., Balakrishnan, V.: Exact formula for the mean length of a random walk on the Sierpinski

gasket. Int. J. Bifurc. Chaos 12, 2379 (2002)
28. Dhar, D.: Branched polymers on the Given-Mandelbrot family of fractals. Phys. Rev. E 71, 031801

(2005)
29. Chang, S.-C., Chen, L.-C.: Dimer-monomer model on the Sierpinski gasket. Physica A 387, 1551–1566

(2008)
30. Tzeng, W.-J., Wu, F.Y.: Dimers on a simple-quartic net with a vacancy. J. Stat. Phys. 110, 671–689

(2003)
31. Wu, F.Y.: Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary. Phys. Rev. E

74, 020104 (2006). Wu, F.Y.: Erratum: Pfaffian solution of a dimer-monomer problem: Single monomer
on the boundary, Phys. Rev. E 74, 039907 (2006)

32. Biggs, N.L.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)
33. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
34. Hilfer, R., Blumen, A.: Renormalisation on Sierpinski-type fractals. J. Phys. A: Math. Gen. 17, L537–

L545 (1984)
35. Misguich, G., Serban, D., Pasquier, V.: Quantum dimer model with extensive ground-state entropy on

the kagome lattice. Phys. Rev. B 67, 214413 (2003)
36. Chang, S.-C., Chen, L.-C.: Dimer coverings on the Sierpinski gasket with possible vacancies on the

outmost vertices. arXiv:0711.0573 (2007)
37. Melzak, Z.A.: Companion to Concrete Mathematics. Wiley, New York (1973), p. 65
38. Nagle, J.F.: New series-expansion method for the dimer problem. Phys. Rev. 152, 190–197 (1966)


	Dimer Coverings on the Sierpinski Gasket
	Abstract
	Introduction
	Preliminaries
	The Number of Dimer Coverings on SG2,b(n) with b=2,3,4,5
	SG2(n)
	SG2,3(n)
	SG2,4(n)
	SG2,5(n)

	The Number of Dimer Coverings on SGd(n) with d=3,4,5
	SG3(n)
	SG4(n)
	SG5(n)

	Summary
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


